Lecture 3 - May 13

Overview of Compilation

Infrastructure:
Front-End, Optimizer, Back-End

Stages:
Lexical, Syntactical, Semantic Analyses

Routines:
Scanning vs. Parsing

, wolld o mpdfcr- IR
Compiler: Typical Infrastructure Lga/ wore | oAz erf

Toic (87 7 [Ofes // %,g\? oT tli:'zl\'l’S
IR

Source lIR] -
Front End Optimizer ~|Back End|—
Program Program

Target

Compiler

Q. What does the behaviour of the target program depend upon?

L foet end me@l& s de T pagne (7R)]
T OpAT petuses the deme m"s/mewy Lot [TR] & 8]

3 botkoerd acaﬂafelag epesers e gt) Thol = ot

Example Compiler 1: Infrastructure

Front End Optimizer et Back End
e r Y Y C— I M M
)))
= A AN c c 8 8
. S = c e O = =
- S 3 © © T[] ® 0 @ 3|1
c w | o g o — . o Ol
'l ima iR inalBs N — N (— N o S =i
SI 1€ [I8][I[E] |E| |EI|2] [a] |<
? ol [|&] [B] [&l 8] |% 2
Q Q Q S 2 e
\‘J \‘ H‘_) \‘) \‘J ‘J Hr’ \‘) \“J
y y y y A A A Y
[Infrastructure]

4t WML/(ﬁ’ alvﬂ C("’Am" il

QL
<

oo [

SbAl s

- A / DHW‘W @ Suwtortial J/ B }'G-y
m]ﬂf Poa/a | asssopten: . 08,
cliss, Wplloss l_} T gy
AP T waw() | e
LG"‘Y\Q L,eﬂ((F’md"("/-/é/é Uq//a("); 7774{. ;pg 0/\ ébg
AT
ot \‘f%/'\ EEBEEY
E @) Jottom -lup’ bl ,/N

o[eX([al AM\V% :

SO50L0505050) 5@

W L«’/
%w[gmﬁﬁ{' N «Ial?A &’}2 fP A@J

0 £ bsslf u M?l da«' y

T

/\

Lexmal Analy5|s Syntactic Analysns Semantic Analysis

. L T —_————————

4
! I
]
]

Source Program

pretty printed
(seq. of characters) Scanner

seq. of tokens Parser . »| Target Program

Analogy: Compare Compilation to Essay Writing

intend to exercise the social requirements and their hegemonic purposes: command,

Introduction l

[¢ ies in today’s ion society are not merely an /-_J /' 5.)
institutional system, instead, they are a system of material objects designed by those who - Wo I s (;Fe
control, and exploitation. In this essay, one main thesis — contemporary technologies are

not neutral — will be revealed by first looking at how Feenberg’s notions of dialectical - s e n fe n ce s 7;
technological rationality and technical code provide a generic template for explaining n,f ﬁ (‘{7 C ’raﬁ A -
how technologies can combine the social and political requirements under a particular _47 (

capitalist social context, and then examining two different standings on arguing the “un- Q

neutrality” of technologies: While Margolis and Resnick argue for the ethical ideas, - m e a n l n g A {
‘Winner, Goodman, McDermott, and Robins and Webster argue against the blamable e'ﬂ L) 1 {M

messages embedded within technologies.

Summaries of Arguments from Sources

In his work, Cressman (2004) describes how Feenberg develops his notions of c
dialectical technological rationality and his concept of the technical code based on ‘/ s {y
Marx’s i i and Marcuse’s ical rationality. Feenberg’s W (
technical code can be defined as the general rule of integrating social requirements and

the technical advancement into a single technological artifact, which frequently binds WVG Ia/e TW (
.

technological applications to hegemonic purposes (Cressman 2004). Based on Marxs

notion of “design critique” of technology, Feenberg claims that the contemporary social
system of capitalism has shaped the sort of technology we are using and even guides I hHe Vac @’PE ? % P

what we will have in the future. A capitalist system mainly requires the control over the

majority of the working class, and hence division of the labour force is implemented, and

while-Loop: Context-Free Grammar (CFG)

WhileLoop = WHILE LPAREN BoolExpr RPAREN LCBRAC|/mplRCBRAC
Impl
' | Instruction SEMICOL Impl |
\\\\ = while ¢ t D pl _Tu]}?l 5
-------- : /
\',p[')/u(l:/e dPF V,’/AST T3 \)M(
Inrdlf (1) : /Nh}'lq C'tM@){ vt L= 33 3 theéw ~t = 3
5 6 m‘“"ﬁlt{ S AN
t prolys’ while ¢ b D U Lapl 3

Tk (2): [hR(bue) 7t T= 35wt TogsT | ™

Compiler Infrastructure: AST-to-AST Optimizer (1)

5() .
loop

a
end

read d
= a %

R el '€

1525 e'".Vl

across 1 |..|

AST of input program:

SeqComp

[Assign

Var Expr Var

[Asﬁ n

L
L1

Assign

7\— /\
Expr Var EXPT Range Var S_}Q

Loop

Expr Expr Expr Assign

Var Expr

Compiler Infrastructure: AST-to-AST Optimizer (2)

D 3= sus 5 B 3= sxe § B 5= s
temp :=|2 * b * cC
across 1 |..| n is 1
loop
read d
end @ o AST of output program:
4;3?7'4 VP
m/wlﬁf)
aly €
! / aAff(’OI

) /w]?-

Compiler Infrastructure: AST-to-AST Optimizer (3)

Q. How should the various artifacts be connected?

b 3= w5 € 8= 3@ A= wes B 3= wes § € cne 5 @ T2 s
across 1 |..| nis 1 temp := 2 * b % cC
loop m@l across 1 |..| n is 1

read d

loop
a:=a=* 2 x b *x c x d read d
end a := a x temp * d

e Wﬂ Waﬁﬁ"ﬁis} T pory-por.

// \ AT o M(Zof/") — g AST
AR AT PSR AN A T

f+1‘+1+/“\ TR /R*O\ 'IR-to-—IR TYTYYY *pxg"'“vm/\w f /\

T T T V:R / \

VAN ! S i
I I T V/;R V/;R E);P ‘c’ mg#(A B{M 3 : a*temp*d
d a a*2*b*c*d

>

